通過驅動ADC實現(xiàn)優(yōu)化的混合信號性能,這是一大設計挑戰(zhàn)。圖1所示為標準的驅動器ADC電路。在ADC采集期間,采樣電容將反沖RC濾波器中指數(shù)衰減的電壓和電流。混合信號ADC驅動器電路的最佳性能受到多個變量影響。驅動器的建立時間、RC濾波器的時間常數(shù)、驅動阻抗,以及ADC采樣電容的反沖電流在采樣時間內相互作用,導致產生采樣誤差。采樣誤差隨著ADC位數(shù)、輸入頻率和采樣頻率的增大而增大。
標準ADC驅動器具有大量實驗數(shù)據(jù)樣本,可用于可靠的設計流程。但缺乏實驗數(shù)據(jù)來引導進行驅動ADC的低通濾波器設計。本文介紹集成模擬低通濾波、信號壓縮和ADC驅動器的LPF驅動器電路(參見圖2)。表1列出了圖2所示電路的性能變量。下方的實驗室數(shù)據(jù)和分析旨在引導說明,給出圖2所示的電路的時間和頻率響應限值。
表1.圖2所示電路的性能變量
實驗室數(shù)據(jù)和分析
信噪比(SNR)和總諧波失真(THD)是衡量系統(tǒng)動態(tài)性能的兩個重要參數(shù)。能否實現(xiàn)最佳性能,取決于ADC和信號調理級的組合,在本文中,后者包括三階低通濾波器和單端至差分轉換器。圖2所示的LPF驅動器電路的–3dB帶寬和建立時間會有所不同,有關SNR和THD的測量值,請參見表2至表5。本文將會探討受測變量和這些變量對系統(tǒng)性能的影響。
低通濾波器–3dB帶寬
比較信號帶寬為1MHz與2MHz和0.5MHz時系統(tǒng)的性能。當–3dB點分別為558kHz、1MHz、和2.3MHz,其性能如表2所示。將截止頻率降低至558kHz,LPF噪聲帶寬隨之降低,但SNR提高。將截止頻率增大至1MHz或2.3MHz,LPF驅動器建立時間縮短,THD降低。
圖1.標準ADC驅動器和RC濾波器。
圖2.LPF驅動器和ADC電路。
表2.R=750Ω時三種截止頻率對應的LPF驅動器性能
更改圖2所示的R或C可以更改截止頻率。使用C電容來設置截止頻率時,LPF驅動器THD更低;R電阻值降低,有助于略微改善SNR;如表3所示。
表3.R=412Ω時三種截止頻率對應的LPF驅動器性能
LPF的RQ電阻可設置時間響應。RQ越高,過沖越大,建立時間越長。RQ越低,過沖越小,建立時間越短。圖3顯示使用150?和75?RQ電阻時對應的LPF瞬態(tài)響應。我們測試了使用不同的RQ時LPF驅動器的性能,測試結果如表4所示。
圖3.不同的RQ值對應的過沖和建立時間。
表4.不同的RQ值對應的LPF驅動器性能
根據(jù)實際測量得出的數(shù)據(jù),使用75?和150?RQ對SNR和THD性能沒有明顯影響,只是影響過沖和建立時間的一個因素。
ADC采樣速率
表5中的數(shù)據(jù)顯示,如果使用LTC2387-18,在10MSPS時系統(tǒng)的THD性能低于15MSPS時(在10MSPS時,圖2中的RC驅動器電容C3和C4的值為180pF)。
注:在10MSPS時,LTC2387-18和LTC2386-18的采樣時間分別為61ns和50ns。
表5.采樣速率為10MSPS和15MSPS時的LPF驅動器性能
RC濾波器
驅動器和ADC之間的RC濾波器用于限制帶寬,確保實現(xiàn)寬帶寬低噪聲,且實現(xiàn)更優(yōu)的信噪比。RC數(shù)值決定–3dB截止頻率。降低R有時可能導致響鈴振蕩和不穩(wěn)定。增大R會增大采樣誤差。使用更低的C值,會導致更高的電荷反沖,但充電時間更快。使用更高的C值,可以降低電荷反沖,但充電時間會變慢。此外,設置RC值是確保在給定的采樣時間內獲取穩(wěn)定樣本的關鍵。使用數(shù)據(jù)手冊的推薦值和精密ADC驅動器工具給出的建議值會是一個非常不錯的起點。
精密ADC驅動器工具是一款綜合工具,可以幫助預測在驅動器和ADC之間使用不同的RC值系統(tǒng)的性能??梢允褂眠@款工具檢查的參數(shù)包括電荷反沖、采樣誤差和采樣時間。
使用25?和180pFRC實現(xiàn)更低的–3dB截止頻率時,輸入信號建立時間和電荷反沖會受到影響。要實現(xiàn)更低的–3dB截止頻率,并確保輸入信號在采集時間內正確建立,我們可能需要使用更低的采樣速率。根據(jù)LTC2387-18數(shù)據(jù)手冊,采樣時間通常是周期時間減去39ns。在15MSPS使用LTC2387-18時,采樣時間為27.67ns,在10MSPS使用此器件時,采樣時間為61ns。
圖4.使用不同采樣速率時的電荷反沖、RC_Tau、采樣時間:(a)15MSPS采樣速率,LTC2387-18使用建議的RC值(25Ω和82pF),(b)15MSPS采樣速率,LTC2386-18使用建議的RC值(25Ω和180pF),(c)10MSPS采樣速率,LTC2386-18使用建議的RC值(25Ω和180pF)。
借助精密ADC驅動器工具,圖4a至4c匯總列出了使用不同的RC值時對應的反沖差值和RC時間常數(shù)(Tau),以及采樣速率為10MSPS和15MSPS時的采樣時間。圖4a顯示LTC2387-18在15MSPS采樣速率下,使用推薦RC值(25?和82pF)時的建立響應。圖4b顯示在C為180pF時,得出的RC時間常數(shù)更高,這導致在15MSPS采樣速率、27.6ns采樣時間內輸入信號無法建立。圖4c使用與圖4b相同的RC值(25?和180pF),但在使用10MSPS采樣速率、采樣時間增加至61ns之后,信號能夠建立。
LPF驅動器電阻選擇
可以通過更改R或C來實現(xiàn)LPF驅動器的–3dB截止頻率。電阻噪聲是系統(tǒng)總噪聲的組成部分。根據(jù)噪聲計算公式,從理論上來說,降低電阻值可以降低電阻噪聲。為了進行驗證,我們嘗試了兩個不同的電阻值作為LPF驅動器R,分別是750?和412?。從理論來說,R更低時得出的SNR應該更佳,但從實際獲得的數(shù)據(jù)來看,如表2和表3所示,SNR并無很大改善,相反,這會對THD性能產生更大影響。
LPF電阻(圖1中的R)越低,放大器所需的電流越大。使用更低的電阻值時,運算放大器的輸出電流高于最大線性驅動電流。
放大器驅動器選擇
在選擇要使用的ADC驅動器時,實現(xiàn)器件最佳性能所對應的規(guī)格至關重要。我們使用兩個ADC驅動器來收集數(shù)據(jù),分別是ADA4899-1和LTC6228。這些ADC驅動器非常適合用于驅動LTC2387-18,后者用于進行實驗室測量。在選擇ADC驅動器時考慮的一些規(guī)格包括帶寬、電壓噪聲、諧波失真和電流驅動能力。根據(jù)已完成的測試,從THD和SNR這兩個方面來看,ADA4899-1和LTC6228的性能差異可以忽略。
LPF設計和應用指南
圖5顯示LPF電路。5個相同電阻(R1至R5)、1個用于調節(jié)LPF時間響應的電阻(RQ)、2個相同的接地電容(C1和C2),以及1個數(shù)值為接地電容1/10的反饋電容(C3),這些器件構成了LPF無源組件(±1%電阻和±5%電容)。
圖5.LPF電路。
簡單的LPF設計流程(注1)
R1至R5=R,C1和C2=C。
要盡量降低失真,電阻R1至R5的值必須在600?至750?范圍內。
設置R=750?
C=1.5E9/f3dB(最接近標準的5%電容pF),f3dB為LPF–3dB頻率(注2)
例如:如果f3dB為1MHz,那么C=(1.5E9)/(1E6)=1500pF
C3=C/10
RQ=R/5或R/10(注3和4)
注1.簡單的濾波器設計只需要一個計算器,無需使用非線性s域公式。
注2.如果R=619?,那么C=1.8E9/f3dB,f3d B為LPF–3dB頻率。
注3.RQ=R/5,用于實現(xiàn)最大阻帶衰減,RQ=R/10,用于實現(xiàn)低過沖和快速建立時間。采用RQ/5和RQ/10時,在10×f–3dB時,阻帶衰減分別為–70dB和–62dB。
注4.如果RQ=R/10,–3dB頻率比RQ=R/5時低7%,也就是說,R1至R5等于RQ/5時R的0.93。
注5.LPF驅動器差分輸出至ADC輸入的PCB線路距離為1''或更低。
注6.LPF運算放大器的VCC和VEE分別為6V和–1V,輸出線性電壓擺幅為0V至4.098V。
結論
根據(jù)表2至表5的SNR和THD數(shù)據(jù),我們可以了解圖2所示電路的性能。通過增大電容來降低LPF帶寬,這會增大SNR(降低LPF噪聲帶寬)。LPF帶寬越低,失真程度越高(因為LPF建立時間比實現(xiàn)最低采樣誤差所需的時間長)。此外,如果LPF電阻值太低,THD會隨之降低,因為LPF運算放大器需要驅動反饋電阻和反相運算放大器輸入電阻(運算放大器輸出電流更高時,失真程度降低)。
LTC2387-18ADC采用10MSPS采樣頻率時,LPF通帶必須為1MHz或高于1MHz,以盡可能降低THD。將LPF設置為1MHz,是對SNR、THD和足量ADC混疊抑制的任意妥協(xié)。
設計參考:ADI的精密ADC驅動器工具
精選器件_運算放大器
精選器件_模數(shù)轉換器