h1_key

當(dāng)前位置:首頁(yè) >新聞資訊 > 技術(shù)文章>安森美>MOSFET的極性反接保護(hù)
MOSFET的極性反接保護(hù)
2023-02-24 600次

  車輛電池順懷需要更換時(shí),新的電池極性接反的可能性很高。車輛中的電子控制單元(EUC)都連接到車輛電池,可能會(huì)導(dǎo)致大量EUC故障。ISO(國(guó)際標(biāo)準(zhǔn)化組織)等汽車標(biāo)準(zhǔn)定義了電氣電子設(shè)備的測(cè)試方法、電壓水平、電磁輻射限值,來確保系統(tǒng)安全可靠地運(yùn)行。和極性反接保護(hù)(RPP)相關(guān)的標(biāo)準(zhǔn)是ISO 7637-2:2011,它能復(fù)制實(shí)際應(yīng)用中的各種電壓場(chǎng)景,并且系統(tǒng)也需要承受此類電壓來展示其能夠防范故障的穩(wěn)定性。這是極性反接保護(hù)成為連接電池的ECU/系統(tǒng)的一個(gè)重要關(guān)鍵組成部分,并且所有的汽車制造商都需要。

  ISO 脈沖

  為確保配備了 12 V 或 24 V 電氣系統(tǒng)的乘用車和商用車上安裝的設(shè)備與傳導(dǎo)電瞬變兼容,國(guó)際標(biāo)準(zhǔn) ISO 7637-2:2011 規(guī)定了測(cè)試方法和程序。

  該標(biāo)準(zhǔn)定義了多種類型的測(cè)試脈沖來測(cè)試器件。以下是其中的幾種測(cè)試脈沖。

  脈沖 1:感性負(fù)載的電源斷開導(dǎo)致的瞬變。

  脈沖 2a:因線束的電感導(dǎo)致與 DUT(被測(cè)器件)并聯(lián)的器件中的電流突然中斷引起的瞬變。

  脈沖 3a 和 3b:由于開關(guān)過程而發(fā)生的瞬變。這些瞬變的特性受線束的分布電容和電感的影響。

  這些測(cè)試脈沖具有不同的負(fù)電壓和正電壓電平,從而對(duì) DUT 施加壓力,看它能否承受。例如,通過圖 1 所示的脈沖 3b 可以大致了解標(biāo)準(zhǔn)中定義的脈沖類型;每種脈沖都有自己的參數(shù),如表 1 所示。脈沖 3b 模擬實(shí)際應(yīng)用中的開關(guān)噪聲,例如,繼電器和開關(guān)觸點(diǎn)抖動(dòng)會(huì)產(chǎn)生短暫的突發(fā)高頻脈沖。AND8228/D 詳細(xì)討論了電壓瞬變和測(cè)試方法。


MOSFET的極性反接保護(hù)

  圖 1. 測(cè)試脈沖 3b


  表 1. 測(cè)試脈沖 3b 的參數(shù)


MOSFET的極性反接保護(hù)


  極性反接保護(hù)技術(shù)

  下面討論三種最常見的極性反接保護(hù)技術(shù)。


  二極管

  保護(hù)系統(tǒng)免受電池反接影響的最簡(jiǎn)單方法是使用二極管。如圖 2 所示,二極管只有在其端子連接到正確的極性(即正偏)時(shí)才會(huì)傳導(dǎo)電流。標(biāo)準(zhǔn)二極管的正向壓降 VF 約為 0.7 V,但肖特基二極管的正向壓降可低至 0.3 V。因此,大多數(shù)應(yīng)用使用肖特基二極管以降低系統(tǒng)損耗。



    MOSFET的極性反接保護(hù)

  圖 2. 使用二極管的極性反接保護(hù)


  圖 3 顯示了 NRVBSS24NT3G 肖特基二極管的典型壓降。在結(jié)溫 TJ 為 25°C 時(shí),如果二極管電流 (IDIODE) 從 0.5 A 提高到 1.0 A(100% 增加),VF 將從 0.35 V 提高到 0.40 V(15% 增加)。


MOSFET的極性反接保護(hù)

  圖 3. NRVBSS24NT3G 肖特基二極管的典型正向電壓


  MOSFET

  二極管的一種替代方案是 MOSFET。當(dāng) MOSFET 導(dǎo)通時(shí),漏源壓降 VDS 取決于漏源電阻 RDS,ON 和漏源電流 ID:VDS = RDS,ON * ID。與肖特基二極管相比,該壓降一般要低得多。


  P 溝道 MOSFET

  與所有 MOSFET 一樣,P 溝道 MOSFET 在源極和漏極之間有一個(gè)本征體二極管。當(dāng)電池正確連接時(shí),本征體二極管導(dǎo)通,直到 MOSFET 的溝道導(dǎo)通。要使 P 溝道 MOSFET 導(dǎo)通,柵極電壓需要比源極電壓低至少 VT(閾值電壓)。當(dāng)電池反接時(shí),體二極管反偏,柵極和源極電壓相同,因此 P 溝道 MOSFET 關(guān)斷。使用一個(gè)額外的齊納二極管來箝位 P 溝道 MOSFET 的柵極,在電壓過高時(shí)提供保護(hù)。


MOSFET的極性反接保護(hù)

  圖 4. 使用 P 溝道 MOSFET 提供極性反接保護(hù)

  N 溝道 MOSFET

  也可以使用 N 溝道 MOSFET 來提供極性反接保護(hù)。當(dāng)電池正確連接時(shí)(源極連接到 VBAT),要使 MOSFET 導(dǎo)通,柵源電壓必須高于閾值電壓 (VGS > VTH)。鑒于源極連接到 VBAT,故柵極電壓需要比 VBAT 高至少 VT。因此,使用一個(gè)專用驅(qū)動(dòng)器來驅(qū)動(dòng) N 溝道 MOSFET 的柵極電壓,使其高于源極電壓,從而使 N 溝道 MOSFET 導(dǎo)通。當(dāng)電池反接時(shí),體二極管反偏(陽(yáng)極電壓低于陰極電壓),驅(qū)動(dòng)器被禁用(源極和柵極短路),N 溝道 MOSFET 關(guān)斷。


MOSFET的極性反接保護(hù)

  圖 5. 使用 N 溝道 MOSFET 提供極性反接保護(hù)


 極性反接保護(hù)技術(shù)比較

  表 2 總結(jié)了不同極性反接保護(hù)技術(shù)的優(yōu)缺點(diǎn)。值得一提的是,P 溝道 MOSFET 的操作取決于空穴的遷移率,而 N 溝道 MOSFET 的操作取決于電子的遷移率。已知對(duì)于相同的漏極電流,電子的遷移率比空穴的遷移率高幾乎 2.5 倍。因此,為實(shí)現(xiàn)相同的導(dǎo)通電阻,P 溝道 MOSFET 的芯片尺寸會(huì)比 N 溝道 MOSFET 更大,相應(yīng)地成本也更高。這使得 N 溝道 MOSFET 比 P 溝道 MOSFET 更適合此類應(yīng)用。


  表 2. 不同保護(hù)技術(shù)的比較


MOSFET的極性反接保護(hù)


  MOSFET 選擇

  選擇用于極性反接保護(hù)的 N 溝道 MOSFET 時(shí),需要考慮多種參數(shù)。

  ● MOSFET 的最大擊穿電壓 VDS,MAX

  對(duì)于 12 V 板網(wǎng)(汽車),首選 VDS,MAX = 40 V

  對(duì)于 24 V 板網(wǎng)(卡車),首選 VDS,MAX = 60V

  ● 最大工作結(jié)溫 TJ,MAX

  對(duì)于汽車和卡車應(yīng)用,鑒于環(huán)境惡劣,建議使用 175°C

  ● 柵極電平

  最好使用邏輯電平,而不要使用標(biāo)準(zhǔn)電平,因?yàn)閷?duì)于相同柵源電壓 VGS,前者的 RDS,ON 更低

  ● 封裝

  ?通常使用帶裸露焊盤的3.30×3.30mm(即 LFPAK33/WDFN8/μ8FL)和 5.00×6.00 mm(即 SO8-FL/LFPAK56)封裝以優(yōu)化功耗

  ● 總柵極電荷 QG,TOT

  MOSFET 導(dǎo)通分為 3 個(gè)階段

  i.

  當(dāng)柵極電壓 VGS 上升至平坦區(qū)域電壓 VGP 時(shí),電荷主要用于為輸入電容 CISS 充電。

  ii.

  iii.

  當(dāng) VGS 處于平坦區(qū)域電壓 VGP 時(shí),電荷主要用于為反向傳輸電容(柵漏電容)CRSS 充電。

  iv.

  v.

  當(dāng) VGS 從 VGP 上升至驅(qū)動(dòng)器電源電壓 VGDR 時(shí),電荷用于進(jìn)一步增強(qiáng)溝道。

  vi.

  QG,TOT 越低,MOSFET 導(dǎo)通所需的柵極電壓和電流越小(即導(dǎo)通速度越快),反之亦然

  ● 漏源電阻 RDS,ON

  RDS,ON 的作用是限制器件的功耗。對(duì)于給定負(fù)載電流,RDS,ON 越大,功耗越高。更高功耗會(huì)導(dǎo)致 MOSFET 的 TJ 升高。因此,為了獲得最優(yōu)性能,正確選擇具有所需 RDS,ON 的器件很重要。

  在以下部分中,選擇用于熱評(píng)估的 MOSFET 的 RDS,ON 將使功耗保持在 500 mW 左右。


  NCV68061 理想二極管控制器

  NCV68061 和外部 N 溝道 MOSFET 的組合構(gòu)成一個(gè)理想二極管:當(dāng)施加正偏電壓(陽(yáng)極電壓高于陰極電壓)時(shí),它充當(dāng)一個(gè)理想導(dǎo)體;當(dāng)施加反偏電壓(陽(yáng)極電壓低于陰極電壓)時(shí),它充當(dāng)一個(gè)理想絕緣體。NCV68061 是一款極性反接保護(hù)和理想二極管 N 溝道 MOSFET 控制器,旨在取代二極管,其損耗和正向電壓更低。

  NCV68061 的主要功能是根據(jù)源漏差分電壓極性控制外部 N 溝道 MOSFET 的通斷狀態(tài)。根據(jù)漏極引腳連接,該器件可以配置為兩種不同的應(yīng)用模式。當(dāng)漏極引腳連接到負(fù)載時(shí),應(yīng)用處于理想二極管模式,而當(dāng)漏極引腳接地時(shí),NCV68061 僅處于極性反接保護(hù)模式。在這兩種模式下,控制器都會(huì)為外部 N 溝道 MOSFET 提供 11.4 V 的典型柵極電壓。因此,以下部分的所有計(jì)算都使用 10 V VGS 時(shí)的 RDS,ON。

  NCV68061 已通過 ISO 7637-2:2011 測(cè)試,結(jié)果證明該器件非常穩(wěn)健,能夠承受電壓應(yīng)力。NCV68061 數(shù)據(jù)表顯示了測(cè)試結(jié)果。


  理想二極管應(yīng)用

  圖 6 顯示了 NCV68061 在理想二極管配置下的使用情況。在此配置中,不允許輸入電壓對(duì)大容量電容 Cbulk 放電。此配置有兩種模式:

  ?導(dǎo)通模式:在進(jìn)入導(dǎo)通模式之前,源極電壓低于漏極電壓,電荷泵和 N 溝道 MOSFET 均被禁用。隨著源極電壓變得比漏極電壓大,正向電流流過 N 溝道 MOSFET 的體二極管。一旦此正向壓降超過源漏柵極充電電壓閾值電平(典型值 140 mV),電荷泵就會(huì)開啟,N 溝道 MOSFET 變成完全導(dǎo)通狀態(tài)。

  反向電流阻斷模式:當(dāng)源極電壓變得比漏極電壓小時(shí),反向電流最初流過 N 溝道 MOSFET 的導(dǎo)電溝道。此電流在 N 溝道 MOSFET 的導(dǎo)電溝道上產(chǎn)生一個(gè)與其 RDS,ON 成比例的壓降。當(dāng)此電壓降至源漏柵極放電電壓閾值(典型值 -10 mV)以下時(shí),電荷泵被禁用,外部 N 溝道 MOSFET 由控制器的內(nèi)部 P 溝道 MOSFET 關(guān)斷。


MOSFET的極性反接保護(hù)

  圖 6. NCV68061 理想二極管應(yīng)用





  圖 7. NCV68061 極性反接保護(hù)應(yīng)用


  極性反接保護(hù)

  如圖 7 所示,通過將漏極引腳連接到 GND 電位,NCV68061 將不允許下降的輸入電壓將輸出放電到 GND 電位以下,但允許輸出跟隨任何高于欠壓鎖定 (UVLO) 閾值的正輸入電壓。這意味著,下降的輸入電壓會(huì)將大容量電容 Cbulk 放電。

  當(dāng)源極電壓高于 UVLO 閾值(典型值 3.3 V)時(shí),源極/漏極和 UVLO 比較器使電荷泵能夠向完全導(dǎo)通的外部 N 溝道 MOSFET 提供柵源電壓。當(dāng)源極電壓低于 UVLO 閾值(典型值 3.2 V)時(shí),電荷泵和 N 溝道 MOSFET 被禁用,所有負(fù)載電流流過 N 溝道 MOSFET 的體二極管。


  測(cè)試設(shè)置

  使用 NCV68061 的專用測(cè)試板來確定各種采用 3×3 和 5×6 封裝且有不同 RDS,ON 的 MOSFET 的功耗和熱性能,以幫助理解不同負(fù)載電流下用于理想二極管控制器的 MOSFET 選擇。


  電路圖

  圖 8 顯示了測(cè)試板的電路圖。其設(shè)計(jì)方式支持測(cè)試SO-8FL/LFPAK4和μ8FL/LFPAK33封裝的MOSFET。每個(gè)MOSFET電路都有一個(gè)跳線來使能/禁用NCV68061,以確保一次只有一個(gè)控制器處于活動(dòng)狀態(tài)。使用 3.3 V LDO NCV4294 為控制器的使能引腳 EN 供電??刂破鲗⒖刂?N 溝道 MOSFET,使其像理想二極管一樣工作,并阻止反向電流。


MOSFET的極性反接保護(hù)

  圖 8. NCV68061 測(cè)試板的電路圖


  布局

  該板是 4 層印刷電路板 (PCB)。輸入和輸出電流分布在頂層、第一內(nèi)層和第二內(nèi)層??缍鄠€(gè)層分布電流有助于減少損耗,并提高電路板的熱性能。第二內(nèi)層具有用于柵極信號(hào)和使能信號(hào)的走線。底層專用于 GND 平面。


MOSFET的極性反接保護(hù)

  圖 9. 頂層


MOSFET的極性反接保護(hù)

  圖 10. 第一內(nèi)層


MOSFET的極性反接保護(hù)

  圖 11. 第二內(nèi)層


MOSFET的極性反接保護(hù)

  圖 12. 底層


  熱測(cè)量

  表 3. 接受評(píng)估的 MOSFET


MOSFET的極性反接保護(hù)


  表 3 顯示了用于熱評(píng)估的 N 溝道 MOSFET。選擇具有不同 RDS,ON 的 MOSFET,將功耗限制在 500 mW 左右。MOSFET 頂部殼溫測(cè)量在 24°C 環(huán)境溫度下進(jìn)行,以評(píng)估不同輸出電流(6 A、8 A 和 10 A)下 MOSFET 的熱性能。使用 SO-8FL/LFPAK4 (5 x 6) 和 μ8FL/LFPAK8 (3 × 3) 封裝的 MOSFET 進(jìn)行評(píng)估。對(duì)每個(gè)負(fù)載電流進(jìn)行兩次測(cè)量,一次使用 5 x 6 封裝,另一次使用 3 x 3 封裝。


MOSFET的極性反接保護(hù)


MOSFET的極性反接保護(hù)

  圖 13. 6 A、μ8FL


MOSFET的極性反接保護(hù)


MOSFET的極性反接保護(hù)

  圖 14. 6 A、SO-8FL


MOSFET的極性反接保護(hù)


MOSFET的極性反接保護(hù)

  圖 15. 8 A、μ8FL


MOSFET的極性反接保護(hù)


MOSFET的極性反接保護(hù)

  圖 16. 8 A、SO-8FL


MOSFET的極性反接保護(hù)


MOSFET的極性反接保護(hù)

  圖 17. 10 A、LFPAK8


MOSFET的極性反接保護(hù)


MOSFET的極性反接保護(hù)

  圖 18. 10 A、LFPAK4


  有了從熱測(cè)量獲得的頂部殼溫和計(jì)算出的功耗,便可使用公式 1 計(jì)算結(jié)溫 TJ。



  (公式1)

  TJ = MOSFET 的結(jié)溫

  TCASE = 熱像儀測(cè)得的封裝頂部溫度

  PD = MOSFET 的功耗

  RθJT = MOSFET 頂部外殼和結(jié)之間的熱阻


MOSFET的極性反接保護(hù)

  圖 19. MOSFET 的等效熱阻


  RθJT 的值不是固定的,它取決于熱邊界條件,如 PCB 布局、MOSFET 的散熱系統(tǒng)(裸露焊盤等)和其他參數(shù),因此數(shù)據(jù)表未提供此值。RθJT 是一個(gè) < 1°C/W 的小數(shù)字,因?yàn)榇蟛糠譄崃繒?huì)通過封裝底部的裸露焊盤從結(jié)流向 PCB。因此,沒有多少熱量從結(jié)流向 MOSFET 頂部,可以認(rèn)為 TJ 和 TCASE 的溫差不大。為了確定 TJ,本應(yīng)用筆記假設(shè) RθJT 為 1°C/W。

  注意:1°C/W 對(duì)于 3 × 3 和 5 × 6 封裝是一個(gè)非常保守的假設(shè)。其他封裝會(huì)有不同的熱阻。

  估算結(jié)溫 TJ

  下面使用測(cè)得的 TCASE 和 MOSFET 的實(shí)際功耗來計(jì)算 TJ。下一步將根據(jù)數(shù)據(jù)表的規(guī)格進(jìn)行理論計(jì)算,并將結(jié)果與使用實(shí)測(cè)數(shù)據(jù)進(jìn)行的計(jì)算進(jìn)行比較,以確認(rèn) TJ 的理論計(jì)算和實(shí)際計(jì)算是否一致。所有計(jì)算均使用 μ8FL (3 × 3) 封裝的 MOSFET NVTFS5C478NLWFTAG。

  使用實(shí)測(cè) TCASE 估算 TJ

  下面的計(jì)算使用從測(cè)量獲得的值來估算 TJ。

  負(fù)載電流 ILOAD = ID = 6.0 A

  輸入電壓 Vin = 12.0 V

  頂部外殼溫度 TCASE = 47.3°C(從熱測(cè)量獲得)

  10.0 V VGS 時(shí)的最大導(dǎo)通電阻 RDS,ON = 14.0 mΩ

  RθJT = 1.0°C/W(3 × 3 和 5 × 6 封裝的假設(shè)值)


MOSFET的極性反接保護(hù)

  (公式2)

  使用公式 1,



  TJ 的理論計(jì)算

  使用基于數(shù)據(jù)表規(guī)格的理論計(jì)算來確定 TJ。假設(shè)損耗為 500 mW,使用公式 3 來確定器件的 TJ。



  (公式3)

  MOSFET 的結(jié)溫 TJ

  MOSFET 工作環(huán)境溫度 TA = 24.0°C

  MOSFET 的功耗 PD = 500.0 mW

  MOSFET 的結(jié)和環(huán)境之間的熱阻 RθJA = 51.0°C/W(值來自數(shù)據(jù)表)


  (公式4)

  NVTFS5C478NLWFTAG 的 TJ,MAX 為 175.0°C,因此有 125.5°C 的裕量。

  估算的 TJ 與理論計(jì)算值之差很小,為 1.7°C(49.5°C - 47.8°C)。在表 4 中,如以上計(jì)算所示,使用理論計(jì)算的 TJ 和實(shí)測(cè)的 TCASE、RθJT、PD 來估算不同負(fù)載和封裝下的 TJ。

  表 4. 建議 MOSFET 的 TJ 計(jì)算值與負(fù)載電流


MOSFET的極性反接保護(hù)


  在 6 A 負(fù)載電流時(shí),5 × 6 封裝的 TJ 裕量比 3 × 3 封裝高約 5.8%。

  在 8 A 負(fù)載電流時(shí),5 × 6 封裝的裕量比 3 × 3 封裝高約 1.6%。兩款器件封裝不同,但使用相同的芯片,因此 TJ 沒有太大區(qū)別。

  在 10 A 時(shí),5 × 6 封裝的裕量比 3 × 3 封裝高約 4.3%。

  同樣,除了一款 10 A MOSFET 有大約 5.4°C 的差異外,理論 TJ 與估算值的差異并不顯著。這表明,對(duì)于此特定測(cè)試設(shè)置,數(shù)據(jù)表中的 RθJA 是可靠的。

  從實(shí)際應(yīng)用角度看,數(shù)據(jù)表中使用 2 oz. 銅焊盤和較大面積電路板測(cè)量 RθJA 似乎不太現(xiàn)實(shí),但它與上面估算的 TJ 差異很小,這表明 RθJA 與針對(duì)散熱優(yōu)化的 4 層測(cè)試板非常匹配。

  結(jié)果顯示,由于封裝較大 (5 × 6),熱量得到有效消散并分布到整個(gè)器件上,因此其裕量更好。從散熱角度看,較大封裝的器件適合負(fù)載電流較高的應(yīng)用以及環(huán)境溫度較高的應(yīng)用。

  ·

  估算最大環(huán)境溫度 TA

  前面的計(jì)算表明,數(shù)據(jù)表的 RθJA 與 NCV68061 測(cè)試板非常匹配,因此可以計(jì)算 MOSFET 工作的最大環(huán)境溫度。

  圖 20 顯示了 NVTFS5C478NLWFTAG 的 RDS,ON 相對(duì)于 TJ 的變化。在 175°C 結(jié)溫時(shí),最大 RDS,ON 比 25°C 結(jié)溫時(shí)高大約 1.85 倍。因此,最大 RDS,ON 為 1.85 × 14 mΩ = ~25.9 mΩ。




  圖 20. NVTFS5C478NLWFTAG 導(dǎo)通電阻隨溫度的變化


  175°C 結(jié)溫和 6 A 負(fù)載電流下的功耗如下:



  RθJA = 51.0°C/W,結(jié)和環(huán)境之間的溫差可以計(jì)算如下:

  溫差 ΔT = 51.0°C/W × 932.4 mW = 47.5°C

  最大 TA = TJ - ΔT

  最大 TA = 175.0°C - 47.5°C = 127.5°C

  從上面的例子可知,MOSFET 可以在最大 127.5°C 的環(huán)境溫度下工作。如果環(huán)境溫度超出該計(jì)算值,則意味著 TJ 已達(dá)到 175°C 以上。

  MOSFET 芯片本身可以在高于 175°C 的溫度下工作,但由于封裝塑封料的限制,以及為了確保長(zhǎng)期運(yùn)行可靠性,MOSFET 數(shù)據(jù)表規(guī)定最大 TJ 為 175°C。高于最大 TJ 的溫度將導(dǎo)致器件行為無法保證,而且這也意味著器件在規(guī)格范圍之外運(yùn)行。

  表 5 顯示了各種 MOSFET 在不同負(fù)載電流下的估算最大環(huán)境溫度,考慮結(jié)溫為 175°C。

  表 5. 估算最大 TAMB


MOSFET的極性反接保護(hù)


  總結(jié)

  極性反接保護(hù)電路是車輛中任何 ECU 的核心構(gòu)建模塊之一。本文討論了幾種極性反接保護(hù)技術(shù),包括二極管、P 溝道 MOSFET 和 N 溝道 MOSFET。本文比較了所有這些技術(shù),并重點(diǎn)指出了每種技術(shù)的優(yōu)缺點(diǎn)。此外,本文提供了 MOSFET 選型指南以支持 MOSFET 選擇過程,并且給出了一個(gè)推薦器件清單。負(fù)載電流從 6 A 到 10 A 的熱測(cè)量表明,從散熱角度看,5×6 封裝表現(xiàn)良好,原因是其封裝和芯片更大,RDS,ON 和功率損耗比 3×3 封裝要低。另外,與較小的芯片相比,較大的芯片有助于更好地散熱。盡管如此,表 3 顯示 5×6 和 3×3 封裝的最大 TJ 的裕量差異并不顯著。根據(jù)應(yīng)用需求和所使用的散熱系統(tǒng),5×6 和 3×3 封裝的 MOSFET 均可選用。

  理論計(jì)算的和實(shí)際估算的結(jié)溫 TJ 沒有顯著差異,數(shù)據(jù)表中給出的 RθJA 是實(shí)際值,可用來在實(shí)際應(yīng)用中執(zhí)行熱分析。使用上文所示的計(jì)算,RθJA 有助于計(jì)算 MOSFET 可運(yùn)行的最大環(huán)境溫度。

  • 設(shè)計(jì)三相PFC注意這幾點(diǎn)!
  • 對(duì)于三相PFC,有多種拓?fù)浣Y(jié)構(gòu),具體可根據(jù)應(yīng)用要求而定。不同的應(yīng)用在功率流方向、尺寸、效率、環(huán)境條件和成本限制等參數(shù)方面會(huì)有所不同。在實(shí)施三相PFC系統(tǒng)時(shí),設(shè)計(jì)人員應(yīng)考慮幾個(gè)注意事項(xiàng)。
    2023-12-22 349次
  • 安森美與博格華納擴(kuò)大碳化硅戰(zhàn)略合作總價(jià)值超10億美元
  • ON(安森美)與提供創(chuàng)新可持續(xù)的車行方案的全球領(lǐng)先供應(yīng)商博格華納(BorgWarner,紐約證交所股票代碼:BWA),擴(kuò)大碳化硅(SiC)方面的戰(zhàn)略合作,協(xié)議總價(jià)值超10億美元。博格華納計(jì)劃將安森美的EliteSiC 1200 V和750 V功率器件集成到其VIPER功率模塊中。長(zhǎng)期以來,雙方已在廣泛的產(chǎn)品領(lǐng)域開展戰(zhàn)略合作,其中即包括EliteSiC器件。
    2023-07-21 440次
  • 安森美三相 PFC 轉(zhuǎn)換器如何大幅提高車載充電器(OBC)功率
  • 在這里,三相 PFC 提供的輸出電壓被固定為 700 V(精度5%)。得益于 SiC 技術(shù),熱容量可以擴(kuò)展至更高的范圍。以 50 Hz、230 Vac 的輸入電壓為例,其最大可交付功率為 11 kW。
    2023-07-14 512次
  • 安森美將汽車圖像傳感器Hyperlux
  • 安森美將汽車圖像傳感器Hyperlux,意味著面對(duì)汽車行業(yè)圖像傳感器設(shè)計(jì)的各種挑戰(zhàn),安森美致力于在千變?nèi)f化的光照條件和極端情況下,依然實(shí)現(xiàn)“所見即所得”,讓汽車之眼看到的光真正做到安全可靠。
    2023-07-08 504次
  • 安森美推出了一款端對(duì)端定位系統(tǒng)
  • 智能電源和智能感知技術(shù)的領(lǐng)先企業(yè)安森美onsemi,推出了一款端對(duì)端定位系統(tǒng),讓設(shè)計(jì)人員可以更方便快速地開發(fā)出更高精度、更具成本效益、更省電的資產(chǎn)追蹤解決方案。該系統(tǒng)基于安森美的RSL15 MCU,這是業(yè)界功耗最低的Bluetooth? 5.2 MCU,并采用了Unikie和CoreHW的軟件算法和組件,形成一個(gè)全集成的解決方案,其組件已經(jīng)過優(yōu)化,可以協(xié)同工作。
    2023-07-04 428次

    萬(wàn)聯(lián)芯微信公眾號(hào)

    元器件現(xiàn)貨+BOM配單+PCBA制造平臺(tái)
    關(guān)注公眾號(hào),優(yōu)惠活動(dòng)早知道!
    10s
    溫馨提示:
    訂單商品問題請(qǐng)移至我的售后服務(wù)提交售后申請(qǐng),其他需投訴問題可移至我的投訴提交,我們將在第一時(shí)間給您答復(fù)
    返回頂部