h1_key

當前位置:首頁 >新聞資訊 > 技術文章>亞德諾>重疊頻率計算器的詳細使用指南
重疊頻率計算器的詳細使用指南
2023-03-02 605次

  提供一種快速、容易使用的工具,用來確定鏡像信號的真實位置和重疊頻率的位置,以及典型頻譜中的諧波頻率。所得數(shù)據用于分析模/數(shù)轉換器(ADC)和數(shù)/模轉換器(DAC)的動態(tài)特性。這個基于Excel®、簡單易用的重疊頻率計算器提供了一種在數(shù)據采樣系統(tǒng)的第一奈奎斯特頻帶中定位基波諧波的快速方法。此計算器與采樣過程無關,系統(tǒng)可以工作在奈奎斯特采樣、過采樣或欠采樣。這個工具對于確定ADC、DAC在第一奈奎斯特頻帶中的重疊頻譜非常有用。

  第一奈奎斯特頻帶中混疊頻率的方法,包括重疊頻率計算器的詳細使用說明。另外,為了增進理解,文中簡要討論了數(shù)據采樣系統(tǒng)或特定數(shù)據轉換器中混疊頻率和奈奎斯特頻率的概念。

  混疊頻率和奈奎斯特頻率

  眾所周知,數(shù)據采樣系統(tǒng)中存在頻率混疊現(xiàn)象,當一個信號以低于奈奎斯特頻率的時鐘采樣時將會發(fā)生頻率混疊,這里的奈奎斯特頻率是2倍的信號頻帶帶寬?,F(xiàn)實世界中的信號頻譜都包含基波諧波,以及頻帶內、外的噪聲。系統(tǒng)固有的非線性和采樣過程的非線性會在輸出波形中產生基波的諧波成分。所有高于fSAMP/2的高次諧波,fSAMP為采樣頻率,混疊頻率將會進入第一奈奎斯特頻帶(圖1a、1b)。


重疊頻率計算器的詳細使用指南

  圖1a. 時域中的混疊現(xiàn)象



  圖1b. 頻域中的混疊現(xiàn)象


  離散時域信號的快速傅立葉變換(FFT)頻譜可以劃分到無窮多個fSAMP/2頻帶,即奈奎斯特頻帶。DC與fSAMP/2之間的頻譜是第一奈奎斯特頻帶。頻譜分量在不同的奈奎斯特頻帶重復。注意:偶次奈奎斯特頻帶是奇次奈奎斯特頻帶的鏡像(圖2)。



  圖2. 多個奈奎斯特頻帶示意圖


  ADC與DAC的頻率混疊

  ADC中的混疊是由輸入級模擬信號的采樣/保持(T/H)過程產生的。在數(shù)字信號處理(DSP)領域,T/H過程等于脈沖序列(由采樣時鐘確定)的頻譜與模擬輸入頻譜的卷積。卷積結果產生了不同奈奎斯特頻帶中的周期性頻譜。當輸入信號包含有大于奈奎斯特頻率(fSAMP/2)的頻譜成分時,相鄰奈奎斯特頻帶將產生相互重疊,從而產生頻率混疊現(xiàn)象。

  DAC中的混疊是由輸出級離散時間采樣的零階保持(ZOH)過程產生的(零階保持器用于避免碼相關的脈沖干擾)。在DSP領域的零階保持過程等于sin(x)/x頻譜(表現(xiàn)為矩形函數(shù),用于保持離散時間樣本)與DAC核輸出脈沖序列頻譜(振幅變化)的卷積。另外,與ADC一樣,不同奈奎斯特頻帶的周期性輸出頻譜是卷積的結果。


  計算器

  從數(shù)學角度看,如果沒有頻率混疊,所有低于fSAMP/2的頻率成分都將出現(xiàn)在頻譜中。然而,由于頻率混疊,任何高于fSAMP/2的諧波成分(fHARM)也會作為鏡頻出現(xiàn),頻率為:|± K x fSAMP ± fHARM |,其中K = 1, 2, 3, 等。

  以下運算用于計算第一奈奎斯特頻帶中的不同諧波:


重疊頻率計算器的詳細使用指南


  其中,fNYQ為奈奎斯特頻率,fSAMP為采樣頻率,fFUND為信號基頻,fHARM為信號諧波頻率,fLOC為諧波分量在第一奈奎斯特頻帶中的位置。

  使用簡單的電子計算器求取不同諧波頻率(fHARM)的位置(fLOC),首先必須確定迭代次數(shù)。為簡化此過程,可以下載“重疊頻率計算器” Excel表格。

  重疊頻率計算器運算時需要兩個輸入變量:采樣頻率fSAMP和信號基頻fFUND。通過這兩個變量,該計算器可以求出奈奎斯特頻率(fNYQ),不同諧波頻率的絕對值(fHARM),以及重疊頻譜中第一奈奎斯特頻帶的不同諧波。表1給出了一個計算重疊頻率的例子。


重疊頻率計算器的詳細使用指南

  表1. 重疊頻率計算(輸入fSAMP=500.000000, fFUND =29.96826172)

  • MICROCHIP(微芯) PIC18F26K22-I/SS 產品參數(shù)介紹
  • MICROCHIP(微芯)的 PIC18F26K22-I/SS 是一款極具特色和優(yōu)勢的微控制器,在眾多應用中展現(xiàn)出卓越的性能和功能。PIC18F26K22-I/SS 采用了高性能的 18 位 CPU 內核,運行速度高達 64 MHz,具備強大的數(shù)據處理能力,能夠高效地執(zhí)行復雜的指令和算法。其工作電壓范圍在 2.3V 至 5.5V 之間,為不同電源環(huán)境下的應用提供了良好的適應性。
    2024-07-31 219次
  • ADI(亞德諾)ADAU1701JSTZ音頻處理器技術解析
  • 在音頻處理領域,ADI(亞德諾)的 ADAU1701JSTZ 是一款性能出色的音頻處理器,為高質量音頻應用提供了強大的支持。ADAU1701JSTZ 采用先進的SigmaDSP?內核,其工作頻率可達50 MHz,能夠快速且高效地處理音頻數(shù)據,確保實時性和精確性。
    2024-07-15 234次
  • 了解ADSP-21489BSWZ-4B數(shù)字信號處理器
  • 在數(shù)字信號處理的舞臺上,ADI(亞德諾)的 ADSP-21489BSWZ-4B 以其卓越的性能和先進的特性脫穎而出,成為眾多應用的核心驅動力。ADSP-21489BSWZ-4B 基于SHARC?架構,工作頻率高達 400 MHz。這種高頻率賦予了它強大的數(shù)據處理能力,能夠迅速執(zhí)行復雜的數(shù)字信號處理算法和指令,確保在實時性要求嚴苛的應用中也能迅速響應。
    2024-07-15 235次
  • ADI(亞德諾)ADSP-21489KSWZ-5B技術詳解
  • ADI(亞德諾)的 ADSP-21489KSWZ-5B 是一款性能卓越、功能強大的處理器,為各種復雜的信號處理任務提供了高效可靠的解決方案。ADSP-21489KSWZ-5B 基于先進的SHARC?架構,工作頻率高達 500 MHz。這種高頻率使得它能夠以極快的速度處理數(shù)據和執(zhí)行指令,具備強大的運算能力和數(shù)據處理能力,能夠在短時間內完成大量復雜的數(shù)字信號處理任務,滿足對實時性和處理速度要求極高的應用場景。
    2024-07-15 199次
  • ADAU1401AWBSTZ-RL音頻處理器技術解析
  • 在音頻處理領域,ADI(亞德諾)的 ADAU1401AWBSTZ-RL 是一款性能卓越、功能豐富的音頻處理器,為各種音頻應用提供了強大的支持。ADAU1401AWBSTZ-RL 基于 SigmaDSP? 內核架構,具有強大的數(shù)字信號處理能力。其工作頻率高達 294.912 MHz,使得它能夠快速而高效地處理音頻數(shù)據,輕松應對復雜的音頻算法和處理任務。
    2024-07-15 164次

    萬聯(lián)芯微信公眾號

    元器件現(xiàn)貨+BOM配單+PCBA制造平臺
    關注公眾號,優(yōu)惠活動早知道!
    10s
    溫馨提示:
    訂單商品問題請移至我的售后服務提交售后申請,其他需投訴問題可移至我的投訴提交,我們將在第一時間給您答復
    返回頂部