熒光檢測診斷技術(shù)的基礎(chǔ)知識
基于熒光方法的IVD檢測使用特定波長的光激發(fā)含有熒光標(biāo)記的樣本,如圖1的綠色箭頭所示。如果樣本中包含目標(biāo)分析物,被熒光標(biāo)記的目標(biāo)分析物會發(fā)射低能量的光對激發(fā)做出反應(yīng)。例如,在圖1中,樣本中的熒光標(biāo)記發(fā)射紅光進(jìn)行響應(yīng),這種發(fā)射光就是我們需要檢測的熒光信號,以確定樣本中是否包含目標(biāo)分析物及其含量。
圖1. IVD熒光檢測系統(tǒng)。
基于熒光方法的診斷檢測需要借助一個閾值去檢測熒光。如果接收的熒光信號低于閾值水平,則無法確定樣本中存在目標(biāo)分析物。系統(tǒng)中的電子器件和一些其他因素可能產(chǎn)生背景噪聲使得閾值增高。為降低閾值水平,同時持續(xù)穩(wěn)定地獲得更出色的靈敏度而不犧牲選擇性,我們需要謹(jǐn)慎設(shè)計光學(xué)檢測系統(tǒng),確保信號鏈不會提高背景噪聲的水平。
典型的PoC熒光檢測系統(tǒng)
典型的PoC診斷熒光檢測系統(tǒng)采用發(fā)光二極管(LED)來生成激發(fā)光,采用光電二極管(PD)來檢測樣本發(fā)出的熒光。PD產(chǎn)生電流,該電流與熒光信號的光強(qiáng)成正比。與本底噪聲相比,PD的電流通常非常低,所以需要精心設(shè)計電子系統(tǒng),在不犧牲選擇性的情況下實現(xiàn)高靈敏度的檢測。圖2顯示了典型PoC熒光檢測系統(tǒng)的主要組成部分??缱璺糯笃?TIA)將PD的電流信號轉(zhuǎn)換為電壓信號,模數(shù)轉(zhuǎn)換器(ADC)將該電壓信號進(jìn)行數(shù)字化處理,并轉(zhuǎn)換為相應(yīng)的熒光水平。
圖2. 典型的PoC診斷熒光檢測系統(tǒng)。
PoC熒光檢測系統(tǒng)的性能需求
PoC系統(tǒng)的設(shè)計人員需要盡量在不犧牲選擇性的情況下實現(xiàn)最高的診斷靈敏度。這就要求PoC儀器能夠可靠識別非常低的PD電流,以響應(yīng)LED的激勵。例如,高靈敏度的系統(tǒng)必須能夠檢測皮安級PD電流,以響應(yīng)100 mA級的LED激勵電流。也就是說,該系統(tǒng)必須能夠檢測約140 dB光學(xué)衰減的PD電流。
要實現(xiàn)這些性能,設(shè)計時需綜合考慮多種器件級和系統(tǒng)級的因素。PD的模擬前端(AFE)設(shè)計尤為重要。因為與本底噪聲相比,PD的電流通常非常微弱,所以TIA必須具備高增益和低輸入偏置電流。除此之外,還需要考慮其他的一些重要參數(shù),包括低TIA輸入失調(diào)電壓,以及PD和TIA之間的最小距離。
系統(tǒng)設(shè)計也是實現(xiàn)高靈敏度檢測的一個重要因素。熒光檢測必須與LED的激勵同步,因此系統(tǒng)需要采用控制器來確保這種同步。要在本底噪聲中識別出微弱的PD電流信號,系統(tǒng)通常需要計算多個熒光讀數(shù)的平均值,這種求均值的技術(shù)是控制器的一個重要功能。環(huán)境光和LED的漂移會導(dǎo)致系統(tǒng)誤差,若能利用控制器抑制環(huán)境光并抑制LED的漂移,就能實現(xiàn)系統(tǒng)性能的整體優(yōu)勢。
集成式光學(xué)前端接收器的優(yōu)勢
PoC讀取器的信號鏈可以選擇兩種明顯不同的架構(gòu):完全分立式解決方案(如圖2所示),或者使用集成式光學(xué)前端(如圖3所示)。
圖3. 使用集成式光學(xué)前端的PoC檢測系統(tǒng)。
集成式解決方案的第一個明顯優(yōu)勢是有助于簡化系統(tǒng)設(shè)計。集成式解決方案可以在光學(xué)前端內(nèi)部實現(xiàn)熒光檢測和LED激勵的同步。采用集成式光學(xué)前端還能減少外圍器件,實現(xiàn)更緊湊的解決方案,從而在降低BOM和電源管理的復(fù)雜程度的同時減小設(shè)備的尺寸。另外非常關(guān)鍵的一點(diǎn)是,集成式光學(xué)前端能夠通過固件配置參數(shù),例如光電二極管、LED驅(qū)動器和濾波器的參數(shù),而分立式解決方案則無法提供這種可配置性,需要重新開發(fā)新硬件??膳渲眯苑浅jP(guān)鍵,因為我們需要根據(jù)變化隨時調(diào)整平臺,以改進(jìn)或者采用新的檢測方法。這是因為某些病原體的新變異株以及一些新的疾病在不斷產(chǎn)生,所以構(gòu)建無需更改硬件就可以實現(xiàn)新的檢測方法的接收器平臺將會成為一大優(yōu)勢。
圖4. MAX86171的功能框圖。
集成式光學(xué)前端具有明顯優(yōu)勢,但是,如何衡量低光度熒光應(yīng)用中光學(xué)前端的性能并不簡單。單純考量集成式光學(xué)前端的信噪比(SNR)并不能揭示光學(xué)接收器的真實性能,這是由于光照水平通常很低,因此光學(xué)前端的絕對本底噪聲而非SNR才是關(guān)鍵參數(shù)。盡管1/f噪聲分量會限制均值方法對本底噪聲的改善程度,但我們還是可以基于熒光測量的時標(biāo)采用均值方法降低本底噪聲。因此,絕對暗電流噪聲特別是閃爍噪聲是主要的考量因素。許多集成式光學(xué)AFE的數(shù)據(jù)手冊都未給出整個系統(tǒng)(包括PD)的暗電流噪聲,因此我們需要單獨(dú)測量該值。
ADI公司的集成式光學(xué)前端
ADI的集成式光學(xué)前端(例如 MAX86171)非常適合PoC熒光應(yīng)用,可以集成模擬信號鏈和數(shù)字控制器從而構(gòu)成光學(xué)接收器的單IC解決方案。MAX86171包含可調(diào)的光電二極管輸入、19位ADC、低噪聲LED驅(qū)動器,以及FIFO緩沖串行接口。
該AFE具有9個LED通道和4個PD通道,擁有足夠通道支持多種檢測方法并支持未來的檢測擴(kuò)展而無需進(jìn)行硬件升級。該器件可通過SPI或I2C進(jìn)行編程,允許對例如積分時間、均值范圍和動態(tài)范圍等參數(shù)進(jìn)行微調(diào)。FIFO支持在MCU的休眠模式下進(jìn)行測量,從而延長手持式PoC系統(tǒng)的電池壽命。
更重要的是,該器件具有高性能和低噪聲的特性,能夠助力構(gòu)建高靈敏度的檢測系統(tǒng)。借助均值功能和低1/f噪聲的特性,面積為7.5 mm2的光電二極管構(gòu)成的信號鏈的暗電流噪聲僅為11 pA rms,能夠可靠檢測1 pA至10 pA范圍內(nèi)的低光電二極管電流,尤其適用于低光度的熒光應(yīng)用。此外,該器件出色的PSRR和環(huán)境光抑制特性能夠減輕系統(tǒng)工程師設(shè)計電源和機(jī)械外殼的負(fù)擔(dān)。
圖5. 采用MAX86171進(jìn)行低光度測量。
我們使用MAX86171驅(qū)動LED通過多層中性密度(ND)光學(xué)濾波器再經(jīng)光電二極管接收以驗證性能,如圖5所示。通過增大ND濾波器的密度,光學(xué)衰減可在40 dB (ND2)至140 dB (ND7)之間變化,由此模擬PCR或LAMP檢測過程中熒光含量減少的行為。當(dāng)衰減低于140 dB時,MAX86171能夠可靠檢測高于本底暗電流的光電二極管電流,并且分辨率好于10 pA。MAX86171之所以具有如此高的靈敏度,是因為光電二極管連接至光學(xué)前端時的暗電流噪聲很低,僅為11 pA rms。
圖6. MAX86171的性能。
經(jīng)過測量得出,MAX86171的性能超出了PoC儀器的性能要求,充分適配各種生化目標(biāo)分析物的檢測。MAX86171的內(nèi)部寄存器支持通過固件設(shè)置,例如脈沖寬度、脈沖強(qiáng)度、增益和偏置。此外,MAX86171還支持采用濾波、均值和環(huán)境光抑制等選項來優(yōu)化光學(xué)檢測的性能。綜上,MAX86171是一種具有極高靈敏度的解決方案,可在不改動硬件的情況下支持新的檢測方法。
IVD系統(tǒng)的電路設(shè)計需要慎重考慮,確保在不犧牲選擇性的情況下實現(xiàn)高靈敏度的檢測。適配各種生化目標(biāo)分析物的檢測系統(tǒng)最為關(guān)鍵的是要保證能夠識別各種微弱的電子信號,只有這樣才能提供準(zhǔn)確的診斷結(jié)果。
PoC市場發(fā)展迅猛,接收器既要具備靈活性以適應(yīng)未來需求,還要能夠適應(yīng)不斷增加和不斷變化的檢測項目。ADI公司的集成式光學(xué)前端MAX86171不但能夠滿足這些嚴(yán)格的性能要求,還支持軟件配置,是降低電子接收器設(shè)計難度和適應(yīng)未來需求的良好解決方案。