h1_key

當(dāng)前位置:首頁 >新聞資訊 > 技術(shù)文章>亞德諾>集成斬波放大器的ADC失調(diào)誤差和輸入阻抗
集成斬波放大器的ADC失調(diào)誤差和輸入阻抗
2023-04-12 472次

  典型DPD應(yīng)用模數(shù)轉(zhuǎn)換器(ADC)中集成的緩沖器和放大器通常是斬波型。有關(guān)這種斬波實(shí)現(xiàn)的例子,可參見AD7124-8 和AD7779數(shù)據(jù)手冊。需要這種斬波技術(shù)來最大程度地降低放大器的失調(diào)和閃爍噪聲(1/f ),因?yàn)榕c其他工藝(如雙極性工藝)相比,CMOS晶體管噪聲高,難以匹配。通過斬波,放大器的1/f和失調(diào)轉(zhuǎn)換到較高頻率,如圖1所示。

  

 

1. 閃爍噪聲(1/f )與斬波

 

  在斬波轉(zhuǎn)換過程中,開關(guān)的電荷注入會(huì)引起電流尖峰,進(jìn)而使施加于ADC輸入端的電壓產(chǎn)生方向不定(流入和/或流出)的下降或尖峰。壓降與連接到ADC輸入段的傳感器的輸出阻抗成比例。

  平均電流值一般而言,數(shù)據(jù)手冊不會(huì)提供電流峰值,因?yàn)樗y以測量,而且不會(huì)增加任何有意義的信息。該信息之所以無意義,是因?yàn)榫彌_器的斬波頻率高于ADC的輸入信號(hào)帶寬。因此,輸入引腳上添加的低通濾波器(用來消除高于奈奎斯特頻率的頻率或信號(hào)音,或用來降低耦合噪聲)會(huì)對(duì)峰值電流進(jìn)行平均,如圖2所示。

  

 

2. 輸入電流與時(shí)間的關(guān)系

 

  用電流表測量輸入電流,一端連接到VDD/2,另一端連接到ADC的模擬輸入引腳。

  如果電流表連接到其中一個(gè)電壓軌,由于輸入電壓裕量的關(guān)系,測得的電流可能高于數(shù)據(jù)手冊中的規(guī)格值。

  輸入電流與輸入阻抗的關(guān)系

  輸入阻抗規(guī)格對(duì)精確計(jì)算直流誤差沒有幫助,因?yàn)榕cADC內(nèi)部輸入阻抗引起的負(fù)載效應(yīng)相比,輸入偏置電流是最主要的貢獻(xiàn)因素。

  有兩個(gè)規(guī)格與輸入偏置電流相關(guān):絕對(duì)電流和差分電流。絕對(duì)值(IABSOLUTE)是在任意模擬輸入引腳測得的輸入電流。差分輸入電流(IDIFFERENTIAL)是在模擬輸入引腳對(duì)之間測得的電流差。這僅適用于差分輸入ADC。

  如何計(jì)算直流誤差

  輸入電流產(chǎn)生一個(gè)失調(diào)電壓(VOFFSET),后者與連接到輸入引腳的阻抗直接相關(guān)。

  如圖3所示,產(chǎn)生的失調(diào)電壓一般為:

  

 

3. 漏電流引起的壓降

 

  如果用運(yùn)算放大器等低阻抗源驅(qū)動(dòng)模擬輸入引腳,誤差將不很明顯。

  ADC測得的誤差取決于施加的輸入信號(hào)類型,例如是真差分輸入信號(hào)還是偽差分/單端輸入信號(hào)。

對(duì)于真差分輸入信號(hào),假設(shè)輸入電阻(R)完全匹配,那么ADC測得的誤差將是由模擬輸入引腳對(duì)之間的差分輸入電流引起,如下式所示:

 

 

  其中,VADC為ADC輸入電壓。

  

 

4. 差分輸入ADC

 

  如果電阻不是完全匹配,則在差分輸入電流貢獻(xiàn)之外,電阻不匹配也會(huì)產(chǎn)生一個(gè)誤差。

  一般而言,假設(shè)電阻容差為1%,那么最差情況下的失調(diào)電壓定義如下:

  

  對(duì)于偽差分/單端輸入信號(hào),有兩種情況:

  ●一個(gè)模擬輸入連接到低阻抗源(參見圖5)。誤差定義為:

  

 

5. 偽差分/單端ADC

 

  ●兩個(gè)輸入均連接到高阻抗源(參見圖6)。誤差與使用真差分信號(hào)的情況相同。

  

 

6. 偽差分ADC

 

  交流誤差

  交流分量與輸入阻抗規(guī)格直接相關(guān)。輸入阻抗可以是阻性或容性。若輸入阻抗為容性,則給定頻率下的阻抗計(jì)算如下:

  

 

  其中:

  Zc為輸入阻抗

  CIN為數(shù)據(jù)手冊給出的輸入電容

  fIN為輸入頻率

舉個(gè)例子,假設(shè)有8 pF電容和1 kHz輸入帶寬,則最小輸入阻抗約為20 MΩ。

 

  誤差最小化

  為使低通濾波器中電阻不匹配引起的誤差最小,最好使用小電阻和大電容,因?yàn)殡娮璁a(chǎn)生的失調(diào)和約翰遜噪聲較低。

 

  • MICROCHIP(微芯) PIC18F26K22-I/SS 產(chǎn)品參數(shù)介紹
  • MICROCHIP(微芯)的 PIC18F26K22-I/SS 是一款極具特色和優(yōu)勢的微控制器,在眾多應(yīng)用中展現(xiàn)出卓越的性能和功能。PIC18F26K22-I/SS 采用了高性能的 18 位 CPU 內(nèi)核,運(yùn)行速度高達(dá) 64 MHz,具備強(qiáng)大的數(shù)據(jù)處理能力,能夠高效地執(zhí)行復(fù)雜的指令和算法。其工作電壓范圍在 2.3V 至 5.5V 之間,為不同電源環(huán)境下的應(yīng)用提供了良好的適應(yīng)性。
    2024-07-31 153次
  • ADI(亞德諾)ADAU1701JSTZ音頻處理器技術(shù)解析
  • 在音頻處理領(lǐng)域,ADI(亞德諾)的 ADAU1701JSTZ 是一款性能出色的音頻處理器,為高質(zhì)量音頻應(yīng)用提供了強(qiáng)大的支持。ADAU1701JSTZ 采用先進(jìn)的SigmaDSP?內(nèi)核,其工作頻率可達(dá)50 MHz,能夠快速且高效地處理音頻數(shù)據(jù),確保實(shí)時(shí)性和精確性。
    2024-07-15 156次
  • 了解ADSP-21489BSWZ-4B數(shù)字信號(hào)處理器
  • 在數(shù)字信號(hào)處理的舞臺(tái)上,ADI(亞德諾)的 ADSP-21489BSWZ-4B 以其卓越的性能和先進(jìn)的特性脫穎而出,成為眾多應(yīng)用的核心驅(qū)動(dòng)力。ADSP-21489BSWZ-4B 基于SHARC?架構(gòu),工作頻率高達(dá) 400 MHz。這種高頻率賦予了它強(qiáng)大的數(shù)據(jù)處理能力,能夠迅速執(zhí)行復(fù)雜的數(shù)字信號(hào)處理算法和指令,確保在實(shí)時(shí)性要求嚴(yán)苛的應(yīng)用中也能迅速響應(yīng)。
    2024-07-15 156次
  • ADI(亞德諾)ADSP-21489KSWZ-5B技術(shù)詳解
  • ADI(亞德諾)的 ADSP-21489KSWZ-5B 是一款性能卓越、功能強(qiáng)大的處理器,為各種復(fù)雜的信號(hào)處理任務(wù)提供了高效可靠的解決方案。ADSP-21489KSWZ-5B 基于先進(jìn)的SHARC?架構(gòu),工作頻率高達(dá) 500 MHz。這種高頻率使得它能夠以極快的速度處理數(shù)據(jù)和執(zhí)行指令,具備強(qiáng)大的運(yùn)算能力和數(shù)據(jù)處理能力,能夠在短時(shí)間內(nèi)完成大量復(fù)雜的數(shù)字信號(hào)處理任務(wù),滿足對(duì)實(shí)時(shí)性和處理速度要求極高的應(yīng)用場景。
    2024-07-15 133次
  • ADAU1401AWBSTZ-RL音頻處理器技術(shù)解析
  • 在音頻處理領(lǐng)域,ADI(亞德諾)的 ADAU1401AWBSTZ-RL 是一款性能卓越、功能豐富的音頻處理器,為各種音頻應(yīng)用提供了強(qiáng)大的支持。ADAU1401AWBSTZ-RL 基于 SigmaDSP? 內(nèi)核架構(gòu),具有強(qiáng)大的數(shù)字信號(hào)處理能力。其工作頻率高達(dá) 294.912 MHz,使得它能夠快速而高效地處理音頻數(shù)據(jù),輕松應(yīng)對(duì)復(fù)雜的音頻算法和處理任務(wù)。
    2024-07-15 123次

    萬聯(lián)芯微信公眾號(hào)

    元器件現(xiàn)貨+BOM配單+PCBA制造平臺(tái)
    關(guān)注公眾號(hào),優(yōu)惠活動(dòng)早知道!
    10s
    溫馨提示:
    訂單商品問題請移至我的售后服務(wù)提交售后申請,其他需投訴問題可移至我的投訴提交,我們將在第一時(shí)間給您答復(fù)
    返回頂部