選擇目前常見(jiàn)的非對(duì)稱加密算法RSA它代表了基于因子分解的數(shù)學(xué)算法。例如,對(duì)安全要求較高的虛擬貨幣使用了對(duì)安全要求較高的虛擬貨幣。ECC該算法來(lái)進(jìn)行加密,法基于更復(fù)雜的橢圓曲線離散對(duì)數(shù)函數(shù)進(jìn)行加密。
隨著近年來(lái)量子計(jì)算的興起,人們意識(shí)到目前所依賴的加密算法在量子計(jì)算機(jī)面前非常脆弱。與傳統(tǒng)計(jì)算機(jī)相比,量子計(jì)算機(jī)在因子分解和離散方面具有指數(shù)級(jí)的加速能力,因此無(wú)論是RSA還是ECC,都有可能被迅速破解。
滑鐵盧大學(xué)量子計(jì)算學(xué)院的聯(lián)合創(chuàng)始人Michele Mosca表示:“我們現(xiàn)在所用的部分加密工具,到2026年就有1/7的概率遭破解;到了2031年,這個(gè)數(shù)字又會(huì)上升到50%。雖然量子攻擊還沒(méi)有發(fā)生,現(xiàn)在就需要做出關(guān)鍵決策了,唯有如此,未來(lái)才能對(duì)這樣的威脅做出響應(yīng)?!?/span>
如何才能在量子計(jì)算時(shí)代保證數(shù)據(jù)安全?讓我們先了解下經(jīng)典加密算法的由來(lái),以及量子計(jì)算機(jī)的基本原理。
從神秘到密鑰:經(jīng)典加密算法的誕生
我們現(xiàn)在常用的經(jīng)典加密算法經(jīng)歷了漫長(zhǎng)的發(fā)展:古代密碼、近代密碼和現(xiàn)代密碼的三個(gè)重要發(fā)展階段,其中現(xiàn)代密碼又分為I、II、III三個(gè)階段。
最早的已知密碼可以追溯到公元前1900年的埃及古王國(guó)時(shí)期,主要是一些特殊雕刻和神秘象形文字。
1883年Kerckhoffs第一次明確提出了密碼編碼的原則,這標(biāo)志著近代密碼的開(kāi)啟。
從1949年之后,經(jīng)典的香農(nóng)(Shannon)理論出現(xiàn),人類(lèi)進(jìn)入了現(xiàn)代密碼的發(fā)展期。
1976年Diffie & Hellman提出了公鑰密碼的概念,數(shù)據(jù)安全從基于算法的保密跨入到了基于密鑰保密的現(xiàn)代密碼II階段。
1994年Shor算法出現(xiàn),人類(lèi)進(jìn)入到了現(xiàn)代密碼III階段。2000年,AES正式取代DES成為了新的加密標(biāo)準(zhǔn)。
但Shor算法的提出,已經(jīng)讓人們意識(shí)到,經(jīng)典的加密算法在量子計(jì)算前已經(jīng)變得不那么安全了,相應(yīng)的后量子密碼學(xué)的研究也逐步開(kāi)展。
2006年,第一屆后量子密碼學(xué)國(guó)際研討會(huì)召開(kāi);2017年,NIST開(kāi)始征集后量子密碼標(biāo)準(zhǔn)。2020年,中國(guó)信息協(xié)會(huì)量子信息分會(huì)發(fā)布了《量子安全技術(shù)白皮書(shū)》。
量子計(jì)算崛起:經(jīng)典加密算法受到威脅
量子計(jì)算機(jī)預(yù)計(jì)將會(huì)在未來(lái)10~20年內(nèi)實(shí)現(xiàn)商用,科技巨頭都在布局,目標(biāo)是給其量子超算增加穩(wěn)定的qubits數(shù)量來(lái)提高算力。
量子計(jì)算機(jī)采用的是量子比特這種疊加態(tài)來(lái)運(yùn)算,這種新的數(shù)據(jù)排列方式可以更快速地存儲(chǔ)和訪問(wèn)信息。通過(guò)消耗大量的計(jì)算資源,量子計(jì)算機(jī)可以將密鑰的破解時(shí)間大大縮短。即使是像AES和RSA/ECC這種經(jīng)典加密算法,也無(wú)法幸免。
Grover算法是一種典型的量子攻擊,它在破解密碼上比傳統(tǒng)計(jì)算機(jī)效率更高,解碼能力基本上等價(jià)于將等效密鑰長(zhǎng)度減半。
Shor量子算法可以在多項(xiàng)式時(shí)間內(nèi)解決大數(shù)分解和離散對(duì)數(shù)求解等復(fù)雜數(shù)學(xué)問(wèn)題,因此可以對(duì)廣泛使用的RSA、ECC等公鑰密碼算法進(jìn)行快速破解,而且RSA和ECC等公鑰密碼算法也無(wú)法通過(guò)增加密鑰長(zhǎng)度抵御這種攻擊。
后量子時(shí)代的安全:英飛凌為你守護(hù)
后量子時(shí)代,人們已經(jīng)開(kāi)始積極開(kāi)展新的加密算法研究,從而確保未來(lái)的數(shù)據(jù)安全。
格密碼是一種基于格(Point Lattice)上的密碼學(xué),因?yàn)樘烊痪哂锌沽孔庸舻奶匦远鴤涫荜P(guān)注。
格密碼能夠在高緯的空間中,求解最短向量問(wèn)題;可以實(shí)現(xiàn)容錯(cuò)學(xué)習(xí)(LWE)和環(huán)上容錯(cuò)學(xué)習(xí)(RLWE);具備優(yōu)異的性能和合理的密鑰、簽名及密文長(zhǎng)度。
作為嵌入式安全解決方案的領(lǐng)導(dǎo)者,英飛凌也已經(jīng)針對(duì)格密碼等后量子密碼學(xué)展開(kāi)了深入的研究。早在2017年,英飛凌慕尼黑總部及奧地利格拉茨非接觸式技術(shù)中心的安全專(zhuān)家,便在常用于智能卡芯片上實(shí)施了后量子密鑰交換方案。這一成就獲得了智能卡與安全技術(shù)領(lǐng)域的兩項(xiàng)SESAMES大獎(jiǎng)。
H2020 FututeTPM項(xiàng)目旨在采用基于格密碼的后量子密碼算法,來(lái)拓展可信計(jì)算設(shè)備,以研究現(xiàn)有芯片在后量子加密軟件和硬件方面的局限性。在該項(xiàng)目中,英飛凌已經(jīng)投入了58萬(wàn)歐元,攜手諸多合作伙伴一起,打造抗量子攻擊的可信計(jì)算平臺(tái)模塊。
為了應(yīng)對(duì)量子計(jì)算帶來(lái)的網(wǎng)絡(luò)安全和加密數(shù)據(jù)威脅,英飛凌推出了全新的OPTIGA?TPMSLB9672。該TPM芯片選擇基于后量子加密技術(shù)的固件更新機(jī)制,是一種前瞻性的安全解決方案。
OPTIGA?TPM該系列包括各種安全控制器,可以保護(hù)嵌入式設(shè)備和系統(tǒng)的完整性和可靠性。借助安全密鑰存儲(chǔ)和各種加密技術(shù)的支持,OPTIGA?TPM由于其豐富的功能給關(guān)鍵數(shù)據(jù)和過(guò)程帶來(lái)了強(qiáng)大的保護(hù)。